Year 11 Semester One Examination, 2018

Question/Answer Booklet

Marks Section 1 /40 Section 2 /60 Section 3 /65 Total /165 %

CHEMISTRY ATAR UNIT 1

Teacher: Ms Brown Ms Goodwin

CANDIDATES MUST WRITE IN BLUE OR BLACK INK THROUGHOUT THIS EXAM.

TIME ALLOWED FOR THIS PAPER

Reading time before commencing work: ten minutes

Working time for the paper: two and a half hours

MATERIALS REQUIRED/RECOMMENDED FOR THIS PAPER

To be provided by the supervisor:

This Question/Answer Booklet Multiple-choice Answer Sheet Chemistry Data Book

To be provided by the candidate:

Standard items: pens (blue/black preferred), pencils (including coloured), sharpener,

eraser, correction tape/fluid, ruler, highlighters

Special items: up to three non-programmable calculators approved for use in the

WACE examinations.

IMPORTANT NOTE TO CANDIDATES

No other items may be taken into the examination room. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

Structure of this paper

Section	Suggested working time (Minutes)	Number of questions available	Number of questions to be attempted	Approx. % of all marks (rounded)	Marks	Your mark
ONE Multiple choice	38	20	All	25	40	
TWO Short response	53	9	All	35	60	
THREE Extended response	59	5	All	40	65	
	150			100	165	

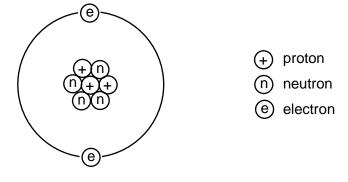
Instructions to candidates

1. Answer the questions according to the following instructions.

Section One: Answer all questions on the separate Multiple-choice Answer Sheet provided. For each question shade the box to indicate your answer. **Use only a blue or black pen to shade the boxes.** If you make a mistake, place a cross through that square then shade your new answer. Do not erase or use correction fluid/tape. Marks will not be deducted for incorrect answers. No marks will be given if more than one answer is completed for any question.

Sections Two and Three: Write your answers in this Question/Answer Booklet.

- 2. When calculating numerical answers, show your working or reasoning clearly. Express numerical answers to the appropriate number of significant figures and include appropriate units where applicable.
- 3. You must be careful to confine your responses to the specific questions asked and to follow any instructions that are specific to a particular question.
- 4. Spare pages are included at the end of this booklet. They can be used for planning your responses and/or as additional space if required to continue an answer.
 - Planning: If you use the spare pages for planning, indicate this clearly at the top of the page.
 - Continuing an answer: If you need to use the space to continue an answer, indicate in the original answer space where the answer is continued, i.e. give the page number. Fill in the number of the question(s) that you are continuing to answer at the top of the page.
- 5. The Chemistry Data Book is **not** to be handed in with your Question/Answer Booklet.


Section One: Multiple-choice

24% (40 marks)

This section has **20** questions. Answer **all** questions on the separate Multiple-choice Answer Sheet provided. For each question, shade the box to indicate your answer. Use only a blue or black pen to shade the boxes. If you make a mistake, place a cross through that square then shade your new answer. Do not erase or use correction fluid/tape. Marks will not be deducted for incorrect answers. No marks will be given if more than one answer is completed for any question.

Suggested working time: 38 minutes.

1. What is the identity of this species?

- (a) Helium atom
- (b) Lithium atom
- (c) Helium ion
- (d) Lithium ion
- 2. Covalent substances are generally not able to conduct electricity because
 - (a) their electrons are localised.
 - (b) their electrons are delocalised.
 - (c) their electrons are transferred.
 - (d) their electrons are shared.
- 3. Eight consecutive elements in the Periodic Table have the following first ionisation energies:

Ionisation Energies in kJ mol ⁻¹								
	707	833	870	1010	1170	376	502	540

One of the eight elements is a halogen. The first ionisation energy of the halogen is:

- (a) 1170
- (b) 1010
- (c) 870
- (d) 376

						Chemistry Unit 1 201				
4.	Which of the following formulas represents a substance that contains twice as much hydrogen as oxygen, and half as much carbon as oxygen?									
	(a) (b) (c) (d)	$\begin{array}{c} C_4 H_8 O_6 \\ C_2 H_6 O_3 \\ C_3 H_{12} O_6 \\ C_5 H_{10} O_3 \end{array}$								
5.	The to	otal number of	protons and e	lectrons in th	e hydrogenca	arbonate ion is				
	(a) (b) (c) (d)	63 62 32 31								
6.	In which of the following combinations of 0.20 mol L ⁻¹ solutions will a green precipitate be formed?									
	(a) (b) (c) (d)	$CrC\ell_3$, $Cu(NCFe(NO_3)_2$, $NaNi(NO_3)_2$, $CuSFeC\ell_3$, $Na_2COSFeC\ell_3$	Cℓ, K₂SO₄ SO₄, KOH							
7.	Whic	h element is fou	und in group 1	5, period 5?						
	(a) (b) (c) (d)	Tin Antimony Polonium Bismuth								
8.	How	many electrons	are in the val	lence shell of	the following	species?				
	(a) (b) (c) (d)	Mg 2 2 1 2	Al ³⁺ 3 8 6 0	O ²⁻ 6 8 4 8	P 5 5 8					

- carbon-12 (a)
- sulfur-32 (b)

- iron-55
- (c) (d) nitrogen-16

- 10. Which of the formulas below is **incorrect**?
 - (a) Ba₂F
 - (b) CaS
 - (c) Na₃P
 - (d) AlCl₃
- 11. Which of the following substances is **not** able to conduct electricity?
 - (a) NaCl(aq)
 - (b) Au(s)
 - (c) KCl(s)
 - (d) Hg(I)
- 12. Use the table to identify a pair of isotopes.

Element	Number of protons	Number of electrons	Number of neutrons			
W	20	21	21			
X	19	18	19			
Y	19	21	19			
Z	20	19	20			

- (a) Elements X and W
- (b) Elements X and Y
- (c) Elements W and Z
- (d) Elements Y and W
- 13. Which of these chemical equations represents an exothermic reaction?
 - (i) $CO + H_2O \rightarrow H_2 + CO_2 + 41 \text{ kJ}$
 - (ii) $CH_4 + H_2O \rightarrow CO + 3 H_2 \quad \Delta H = +206 \text{ kJ}$
 - (iii) $N_2O_3 + 40 \text{ kJ} \rightarrow NO + NO_2$
 - (a) (i) only
 - (b) (ii) only
 - (c) (iii) only
 - (d) (ii) and (iii) only
- 14. Element X is in group 16 of the periodic table. Which of the following compounds is **least** likely to form?
 - (a) H_2X
 - (b) NaX
 - (c) MgX
 - (d) F_2X

4	5.	onic substances are brittle because
1	^	inic elinetancae ara nrittia nacallea
	J.	niio substantes are brittie because

- (a) electrons have been transferred between species.
- (b) electrons are shared between species.
- (c) they are solids at room temperature.
- (d) the charged species are arranged in a rigid lattice.

16. What are the coefficients in this equation once correctly balanced?

- (a) 2, 2, 3
- (b) 1, 3, 1, 2
- (c) 4, 2, 3, 5
- (d) 4, 5, 4, 6

17. Which of the following contains the greatest number of **atoms**?

- (a) 3.0 g of Pb
- (b) 0.01 mol of Ca
- (c) 0.005 mol of NaCl
- (d) 0.28 g NO₂

18. Which of the following are covalent compounds?

- (i) Hydrogen peroxide
- (ii) Carbon monoxide
- (iii) Potassium hydroxide
- (iv) Copper(II) phosphate
- (v) Sulfurous acid
- (a) (i), (ii) and (v) only
- (b) (ii) and (v) only
- (c) (i) and (ii) only
- (d) (ii), (iii) and (v) only

Questions 19 and 20 relate to three common allotropes of carbon; diamond, graphite and fullerenes.

Consider the list of physical properties given below.

- (i) Conductor of electricity
- (ii) High melting point
- (iii) Hard substance
- (iv) Inert (unreactive) substance
- (v) Atoms form a three dimensional network shape
- 19. Which of these properties correspond to diamond?
 - (a) (i), (ii) and (iv) only
 - (b) (ii), (iii) (iv) and (v) only
 - (c) (i), (iii) and (v) only
 - (d) (ii), (iii) and (v) only
- 20. Which of these properties correspond to graphite?
 - (a) (i) and (iv) only
 - (b) (ii) and (v) only
 - (c) (i), (ii) and (iv) only
 - (d) (i), (iii) and (v) only

End of Section One

Section Two: Short answer

35% (60 marks)

This section has **eleven (11)** questions. Answer **all** questions. Write your answers in the spaces provided.

When calculating numerical answers, show your working or reasoning clearly. Express numerical answers to the appropriate number of significant figures and include appropriate units where applicable.

Spare pages are included at the end of this booklet. They can be used for planning your responses and/or as additional space if required to continue an answer.

- Planning: If you use the spare pages for planning, indicate this clearly at the top of the page.
- Continuing an answer: If you need to use the space to continue an answer, indicate in the
 original answer space where the answer is continued, i.e. give the page number. Fill in the
 number of the question(s) that you are continuing to answer at the top of the page.

Suggested working time: 53 minutes.

Question 21 (6 marks)

Two sulfur-containing compounds that have very different properties are aluminium sulfate $(Al_2(SO_4)_3)$ and sulfur trioxide (SO_3) .

Explain, in terms of structure, bonding and melting point, why aluminium sulfate is a solid at room temperature, whereas sulfur trioxide is a gas at room temperature.

(You may include annotated diagrams to aid your explanation.)							
		_					
		_					
		_					
		_					
		_					
		_					

			Chemistry Unit 1 20	18
-	 	 		

Diagrams

Question 22 (8 marks)

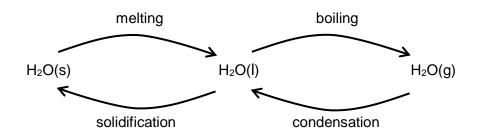
(a) Complete the table below by;

(6 marks)

- drawing structural formulas showing all bonds and atoms, and
- writing the molecular formula for each organic molecule.

	Structural diagram	Molar Mass
Al ₂ S ₃		
SO ₂		
Al ₂ (SO ₄) ₃		

(b) Which of the compounds above contains the highest percentage of sulfur by mass? Calculate this value. (2 marks)


Question 23	(8 marks)
-------------	-----------

Consider the elements labelled A-E on the diagram below, which shows the first four periods of the periodic table.

Α																	
	В														С	D	
Е																	
(a)	Why are A and E both in group 1? (1 mark)										ark)						
(b)	Wh	y are	В, С а	and D	all in	perio	d 2?									(1 m	ark)
(c)	Why would atoms of element C and E form chemical bonds? State the type of compound formed and describe how the chemical bonds form. (3 marks)																
(d)	Wh forn	y wou ned a	ıld ato	ms of	f elem	ent C	and hemic	D forr	n che nds fo	mical orm.	bond	s? Sta	ate th	e type	e of co	mpou (3 m	ind arks)

Question 24	(6 marks)
-------------	-----------

Consider the diagram below.

Name one (1) of the labelled phase changes that is endothermic . Justify your choice.
(3 mark

Bioluminescent Bay in Puerto Rico is a popular tourist attraction because of the microorganisms that live in the water. These types of organisms glow in the dark because they produce light by a special chemical reaction.

o)	Explain why this reaction is exothermic.	(3 marks)

Question 25	(8 marks)
-------------	-----------

All matter can be classified as either pure substances or mixtures.

(a) Complete the table below by writing the name or formula of the compound, as well as classifying the compound as having consistent properties with either an ionic or covalent substance. (6 marks)

Name	Formula	Covalent or ionic properties
Ammonium carbonate		
	Fe(NO ₃) ₃	
Ethanoic acid		

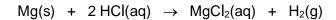
The table ab	ove refers	only to pu	ure subst	ances.
--------------	------------	------------	-----------	--------

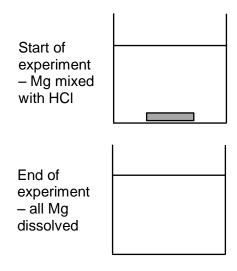
(b)	State two (2) ways a mixture differs from a pure substance.	(2 marks)

Question 26 (7 marks)

Complete the table below, showing the subatomic particle arrangement of the four different species.

Symbol	Number of protons	Number of neutrons	Electron configuration	Electron energy configuration (s, p, d)
¹⁹ F				
	11	12	2, 8	
³² S ²⁻	16	16		
	6	8	2, 4	


Question 27	(7 marks)
-------------	-----------

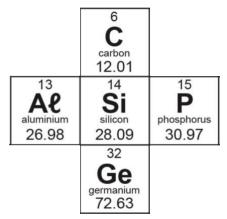

Salts containing the metal potassium (K) have a characteristic lilac (purple) colour in a flame test. A chemistry student was planning on performing flame tests on a series of different salt samples, trying to find one that contained a rare isotope of potassium. However, the student decided that the flame test would not be reliable as the isotope flame colour would be different from usual.

(a)	What is an isotope?	(2 marks)
(b)	Was the student correct? Explain.	(3 marks)
Thom	relative atomic mass (Ar) of potassium is 39.10.	
(c)	What is the Ar of an element? What does it indicate that the Ar of potassium is ownole number of 39?	close to the (2 marks)

Question 28 (6 marks)

A student was conducting an experiment on the reaction between magnesium metal (Mg) and hydrochloric acid (HCl). Her experimental set up is shown below, as well as the measurements that she made during the investigation.

Mass of empty beaker	34.5 g
Mass of Mg added	8.9 g
Mass of HCl added	43.1 g
Total mass of beaker at start of experiment	


Total mass of beaker at end of experiment	85.8
---	------

(a) State the Law of Conservation of Mass and use this law to calculate the mass of hydrogen gas produced in this experiment. You may assume the acid was in excess and all of the magnesium reacted. (3 marks)

(b) If 8.9 g of magnesium was used in the experiment, as stated above, calculate the mass of hydrochloric acid that would have been consumed. (3 marks)

Question 29	(4 marks)

A portion of the periodic table, showing the elements surrounding silicon, is given below. Consider the five elements in the diagram.

 Of these elements, germanium has the largest atomic radius and the sm energy. Explain why, this statement is correct. 	(3 marks)		
	· · · · · · · · · · · · · · · · · · ·		
b) Which Period 3 element has the highest electronegativity?			
	(1 mark)		

This page is intentionally blank.

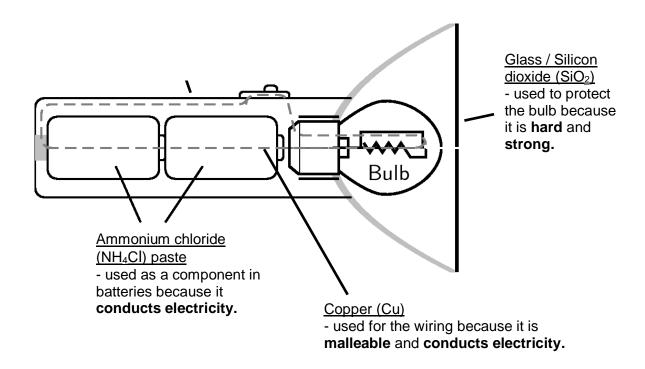
Section Three: Extended answer

40% (65 marks)

This section contains **five (5)** questions. You must answer **all** questions. Write your answers in the spaces provided below.

Where questions require an explanation and/or description, marks are awarded for the relevant chemical content and also for coherence and clarity of expression. Lists or dot points are unlikely to gain full marks.

Final answers to calculations should be expressed to the appropriate number of significant figures.


Spare pages are included at the end of this booklet. They can be used for planning your responses and/or as additional space if required to continue an answer.

- Planning: If you use the spare pages for planning, indicate this clearly at the top of the page.
- Continuing an answer: If you need to use the space to continue an answer, indicate in the
 original answer space where the answer is continued, i.e. give the page number. Fill in the
 number of the question(s) that you are continuing to answer at the top of the page.

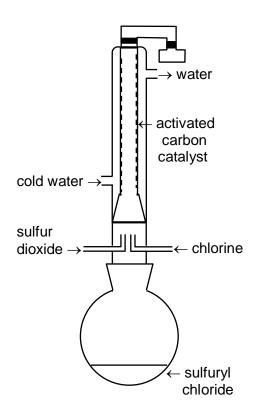
Suggested working time: 59 minutes.

Question 30 (11 marks)

Study the following diagram of a torch (flashlight). Several components have been labelled and some information about the properties of these materials has also been included.

Explain why each of the labelled materials has been used in this torch.						
Your answer should focus on the type of bonding present in each of the three (3) labelled components, as well as an explanation of their main properties (shown in bold), in <u>terms of the structure and bonding present</u> .						

Diagrams from Q 30 may be drawn here.


Question 31 (9 marks)

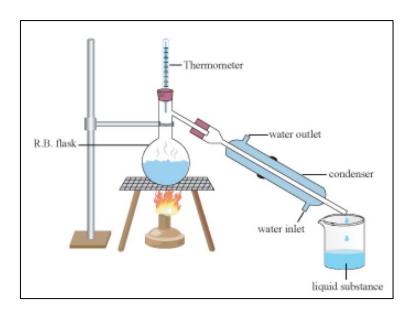
Sulfuryl chloride is a toxic, corrosive substance with a pungent odour. It isn't found in nature because it reacts quickly with water to produce a mixture of hydrochloric and sulfuric acids. Some information on sulfuryl chloride is shown in the table below.

Formula	SO ₂ Cl ₂
Melting point	-54.1 °C
Boiling point	69.4 °C
Density	1.67 g mL ⁻¹

(a)

Sulfuryl chloride can be made using the apparatus shown in the diagram to the right. **Sulfur dioxide** and **chlorine gases** are added into the glass reaction vessel. Here they react to form **sulfuryl chloride**. The inner tube of the reaction vessel is coated with an **activated carbon (C) catalyst**. This reaction is **exothermic**, so cold water is

used to cool the glass reaction vessel and keep the temperature at around 30-40 °C.


reaction vessel is kept to around 30-40 °C? Justify your answer.	(2 marks
Write a balanced molecular equation for the synthesis of sulfuryl chlorid	e, as described in
the reaction above. Include all bolded information, as well as phase (state)	

What phase (state) would sulfuryl chloride be when it forms, if the temperature of the

c)	If 87.5 g of sulfur dioxide gas is added into the reaction vessel, what is the maximum ma						
	of sulfuryl chloride that could be produced?	(3 marks					

Once sulfuryl chloride is produced, it is separated from the reaction mixture by distillation. This is done by heating the reaction vessel to 68-70 $^{\circ}$ C and collecting the sulfuryl chloride fraction (component).

Distillation is a technique of separating a mixture based on the boiling point differences in the individual components of the mixture. See the diagram below.

(d)	Why is a temperature of 68-70 °C chosen to separate the sulfuryl chloride during the					
	distillation process?	(2 marks)				

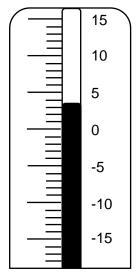
Question 32 (17 marks)

Three groups of chemistry students (A, B and C) were investigating endothermic and exothermic reactions. Each group was given one reaction to study, as shown in the table below.

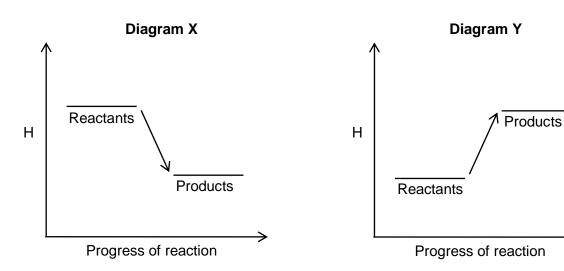
Group A	$ \textbf{p A} \qquad \qquad \text{HCl(aq) + NaHCO}_3(\text{aq}) \rightarrow \text{NaCl(aq) + CO}_2(\text{g}) + \text{H}_2\text{O(l)} $						
Group B $CuSO_4(aq) + Mg(s) \rightarrow MgSO_4(aq) + Cu(s)$							
Group C	$Ba(OH)_2(s) + 2 NH_4SCN(s) \rightarrow Ba(SCN)_2(aq) + 2 H_2O(l) + 2 NH_3(g)$						

Each group planned their experiment, with the aim to investigate whether their reaction was endothermic or exothermic. They mixed their reagents together in test tubes and recorded the initial temperature of the system, as well as the final temperature once the reaction was finished.

The incomplete results of each group are shown in the tables below.


Group A	Trial 1	Trial 2	Trial 3
Initial temp (°C)	20.5	20.0	21.5
Final temp (°C)	17.0	16.0	18.0
Temperature change (°C)	- 3.5	- 4.0	- 3.5

Group B	Trial 1	Trial 2	Trial 3
Initial temp (°C)	22.5	21.5	23.0
Final temp (°C)	25.0	26.5	26.5
Temperature change (°C)	+ 2.5	+ 5.0	+ 3.5


Group C	Trial 1	Trial 2	Trial 3
Initial temp (°C)	18.5	19.0	19.5
Final temp (°C)	4.0	5.5	
Temperature change (°C)	-14.5		

The final temperature reading of group C is shown on the thermometer to the right.

(a) Complete the tables on the previous page, by reading the final result for group C and recording it in the correct table. Then fill in any other values that are missing, by calculating the change in temperature (i.e. final – initial). (2 marks)

The following diagrams represent the energy changes that can occur during a reaction, as well as illustrate whether a reaction is endothermic or exothermic.

Choose one of the reactions investigated (A, B or C) that corresponds to Diagram X.

(b) State the reaction (A, B or C) and explain what information this diagram provides in terms of the bond breaking and bond making that has occurred in your chosen reaction.

I chose reaction	Α	or	В	or	С	(circle your choice of reaction)

(3 marks)

State the reaction (A, B or C) and explain why this diagram represents your chose reaction. Include a description of how the Law of Conservation of Energy relates diagram.					
Explain why the groups would have chosen to carry out three trials.	(2 marks				
Which group had the most precise results? Justify your answer and explain the obetween precise and accurate.	difference (3 marks				

(f)	Is this a random or systematic error? Justify your choice and state the likely effect that this error would have had on the final temperatures that group B measured (i.e. higher, lower or unchanged)? (3 marks)
	·

Group B realised that they had forgotten to 'tare' (reset to zero) the balance they used to weigh out

the magnesium metal. This resulted in them using less Mg(s) than intended in each trial.

Question 33	(19 marks)
-------------	------------

Diesel is a fuel that can be obtained from crude oil. It is used in most forms of transport, from trucks, cars and tractors to aircraft and rail cars. Biodiesel is most commonly produced from vegetable oil in a chemical reaction called transesterification. It can be used in pure form, in many of the same vehicles as regular diesel, however it is often used as a biodiesel-diesel mix.

Briefly describe two (2) advantages of using biofuels instead of fossil fuels as source.	(2 r
	`
State two (2) reasons it is not always possible for people to use biofuels.	

The table below gives some information regarding diesel and biodiesel.

	Formula	Molecular mass (M)	Energy output (MJ kg ⁻¹)
Diesel	C ₁₈ H ₃₄		44.98
Biodiesel	C ₁₈ H ₃₆ O ₂		38.48

(c) Complete the table by calculating the molecular mass (w) of each rule. (2 mail	ulating the molecular mass (M) of each fuel. (2 mark	ng the molecular mass (M) of each fuel. (2 mar	(c) Complete the ta
--	--	--	---------------------

(d)	Calculate the energy output of diesel in kilojoules per mole (kJ mol ⁻¹). Note: 1 MJ = 1 x 10 ⁶ J.	(4 marks)
The ed	quation for the combustion of biodiesel is shown below.	
	$C_{18}H_{36}O_2(I) \ + \ 26 \ O_2(g) \ \rightarrow \ 18 \ CO_2(g) \ + \ 18 \ H_2O(I) \ + \ 10946 \ kJ$	
If a sai atmos	mple of biodiesel was combusted and 7.045 tonnes of $CO_2(g)$ was released integrated phere;	o the
(e)	Calculate the mass of biodiesel that would have been consumed. Express yo the appropriate number of significant figures.	ur answer to (5 marks)

ass of diesel	would have	e been nee	eded to rele	ease this sa	ime amount	of energy? (2 ma
	nass of diesel	nass of diesel would have	nass of diesel would have been nee	nass of diesel would have been needed to rele	nass of diesel would have been needed to release this sa	nass of diesel would have been needed to release this same amount

Question 34 (9 marks)

Hydrazine (N_2H_4) is a toxic, unstable substance, which is sometimes used in rocket fuels. When hydrazine is passed over a catalyst such as molybdenum nitride on alumina, it decomposes very quickly according to the following equation;

$$N_2H_4$$
 (I) \rightarrow N_2 (g) + 2 H_2 (g)

The activation energy for this reaction is 295 kJ mol⁻¹ and the activation energy for the reverse reaction is 1335 kJ mol⁻¹.

(a) Calculate the enthalpy change (ΔH).

(1 mark)

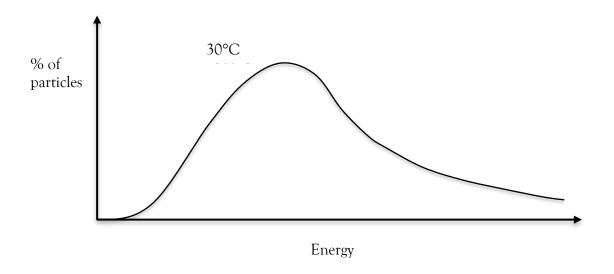
(b) Sketch a labelled potential energy diagram for the uncatalysed decomposition of hydrazine. Label the activation energy, reverse activation energy and enthalpy change. (4 marks)

Progress of reaction

(c) If the molybdenum nitride on alumina catalyst had been used, show the effect this would have on the potential energy diagram above. (1 mark)

(d) What effect (higher, lower, unchanged) would the addition of a catalyst have on the value of each of the following? (3 marks)

(i) Activation energy


(ii) Reverse activation energy

(iii) Enthalpy change

in

(c) The graph below shows the distribution of molecular energies in the reaction vessel at 30°C. ON THESE AXES, sketch a graph to show how the distribution would change if the temperature were <u>raised</u> to some new temperature T_2 . (1 mark)

(a)	your answer.	on theory in (3 marks)
		-
		-
		-
		-
		-
		_
		_
		_

End of questions.

Spare answer page		
Question number:		

Spare answer page		
Question number:		

35 Chemistry Unit 1 2018 Spare answer page Question number:

Acknowledgements

Question 11 Source: http://scienceaid.co.uk/chemistry/fundamental/particles.html

Question 36 Source: OpenStax, Physics - grade 10 [caps 2011]. OpenStax CNX. Jun 14, 2011 Download for free at http://cnx.org/content/col11298/1.3